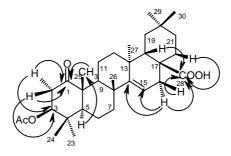
Sebiferone, a New Triterpenoid from Stem Bark of *Sapium sebiferum* (L.) Roxb.

Run Hui LIU, Ling Yi KONG*


Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210038

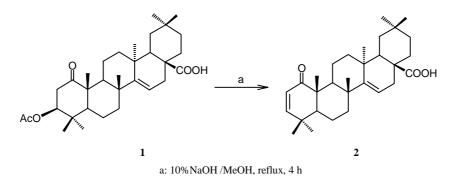
Abstract: From the stem bark of *Sapium sebiferum* a new triterpenoid, named sebiferone (1), was isolated. The structure of the new compound was elucidated as 3β -acetoxy-D-friedoolen-14-en -1-one-28-oic acid on the basis of spectral and chemical methods.

Keywords: Sapium sebiferum., Euphorbiaceae, sebiferone.

Sapium sebiferum (L.) Roxb. (Euphorbiaceae), which was native to China, now spreaded world wide, and very familiar to us as a roadside and garden tree. The root, stem bark and leaves of *Sapium sebiferum* have been used as a purgative and diuretic in traditional chinese medicine. This plant has attracted much attention in 1960s because of its effective activity against schistosoma japonicum¹. Many triterpenoids have been found previously in this plant^{2,3}. We report here the isolation and structural elucidation of a new triterpenoid **1** from the stem bark of *Sapium sebiferum*.

Figure 1 The key correlations of compound 1 in HMBC spectrum

The EtOH extract of the dried and powdered stem bark of *Sapium sebiferum* was partitioned with petroleum ether, EtOAc and n-BuOH. The petroleum ether fraction was further separated by silica gel chromatography and crystallized from petroleum ether/EtOAc to afford **1**. Compound **1** was obtained as a colorless amorphous solid, mp 228-230°C. It gave a positive Liebermann-Burchard test for triterpenoids. The EIMS


^{*}E-mail: lykong@jlonline.com

Run Hui LIU et al.

of **1** revealed the molecular ion peak at m/z 512, the ¹³C NMR and DEPT spectrum exhibited 32 carbon signals (8×CH₃, 9×CH₂, 5×CH, 10×C). Then the molecular formula of **1** was deduced to be C₃₂H₄₈O₅. Its IR spectrum showed the presence of three carbonyl groups (1737, 1713, 1690 cm⁻¹). The ¹H NMR spectrum (**Table 1**) was observed the presence of seven tertiary methyl groups on saturated carbons at δ 0.91(s, 3H), 0.94(s, 6H), 0.99(s, 6H), 1.06(s, 3H), 1.34(s, 3H), one acetoxy methyl at δ 2.05(s, 3H), one oxymethine proton was observed as double doublet at δ 4.73(dd, 1H, J=4.7, 11.5Hz), which is due to the axial proton attached to C-3 containing the acetoxy group in equatorial position⁴, one olefinic proton appeared as a double doublet at δ 5.51(dd, 1H, J=3.3, 7.8Hz). Two olefinic carbons at δ 160.2 and 116.8 in the ¹³C NMR (**Table 1**) spectrum indicated that compound **1** belongs to the taraxerane-type triterpenoid, and the double bond is at C-14 and C-15⁴. The position of the carboxylic group at C-17 was confirmed by the HMBC spectrum (**Figure 1**). The correlation of C-28 (-COOH) with H₂-16, H-18 and H-22 were observed in the HMBC spectrum.

The ¹H and ¹³C NMR data of **1** were similar to those of aleuritolic acid acetate (3 β -acetoxy-D-friedoolean-14-en-28-oic acid)⁵, except for the absence of a methylene signal and the appearance of an additional ketone carbonyl signal (δ 210.8) in the ¹³C NMR spectrum. Thus, compound **1** was considered to be the oxidized derivative of aleuritolic acid acetate. The position of the ketone group at C-1 was determined by the long-range correlation observed in the HMBC spectrum (**Figure 1**). In the HMBC spectra of **1**, H₂-2, H-3 and H₃-25 were observed to be have long-range correlations with the ketone carbon, indicating that the ketone group should be at C-1.

Meanwhile, the location of ketone group at C-1 was also further proved by the hydrolysis reaction (**Figure 2**) of **1**. In this reaction the acetoxyl at C-3 and one proton at C-2 were eliminated to give compound **2** with α , β -unsaturated carbonyl function, which is due to the active proton at C-2 neighbouring with the C-1 ketone group. The structure of product **2** was elucidated as D-friedoolen-2, 14-dien -1-one -28-oic acid by spectral methods⁶, and confirmed that it is also a new compound. Thus, **1** was finally elucidated as 3 β -acetoxy-D-friedoolen-14-en-1- one-28-oic acid, named as sebiferone.

Sebiferone, a New Triterpenoid from Stem Bark of Sapium sebiferum 1081 (L.) Roxb.

Position	$\delta_{\rm C}$	δ _H	coupling in HMBC
1	210.8		Η-2α, Η-2β, Η-3, Η-25
2	40.7	2.97(t, 11.5, H-2β)	
		2.46(dd, 4.7, 11.5, H-2α)	
3	78.6	4.73(dd, 4.7, 11.5)	H-2α, H-2β, H-5, H-23, H-24
4	38.2		H-2α, H-2β, H-3,H-23, H-24
5	53.9	1.03	H-3, H-6 β , H-7β, H-23, H-24, H-25
6	18.5	1.45(H-6β)	Η-5, Η-7β
7	39.8	1.96(H-7β), 1.25(H-7α)	H-5
8	38.9		H-7β, H-9, H-26
9	41.9	2.01	Η-7α, Η-7β, Η-25, Η-26
10	53.5		H-2a, H-9, H-5, H-25
11	18.4	1.71(H-11β), 1.64(H-11α)	H-9, H-12 α
12	33.5	1.73(H-12β), 1.61(H-12α)	H-27
13	37.5	-	H-12β, H-12α, H-15, H-18, H-27
14	160.2		H-12α, H-16α, H-16β, H-26
15	116.8	5.51(dd, 3.3, 7.8)	Η-16β
16	31.5	2.47(H-16 β), 1.97(H-16α)	
17	51.3		Η-16α, Η-16β, Η-18, Η-19β, Η-19α
18	41.6	2.29(dd, 2.2, 14.7)	Η-12α, Η-16α, Η-16β, Η-19α, Η-27
19	35.4	1.28(H-19α), 1.16(H-19β)	H-29, H-30
20	29.3		H-19α, H-29, H-30
21	33.7	1.19(H-21β), 1.09(H-21α)	H-19 β , H-22β, H-29, H-30
22	30.8	1.68(H-22β), 1.41(H-22α)	Η-12α, Η-21β
23	28.5	0.94(s)	H-3, H-5, H-24
24	17.4	1.06(s)	H-3, H-5, H-23
25	15.3	1.34(s)	H-5, H-9
26	26.0	0.99(s)	Η-7β, Η-9
27	22.7	0.99(s)	H-12 α , H-12β
28	183.6		Η-16α, Η-16β, Η-18, Η-22α
29	31.9 ^a	$0.94(s)^{c}$	H-19a, H-21a, H-30
30	28.7 ^b	$0.91(s)^{d}$	Η-19α, Η-21α,Η-29
COCH3	169.9		Н-3
COCH ₃	21.0	2.05(s)	

Table 1 ^{-1}H and ^{13}C NMR spectrum data of compound 1 in CDCl_3 ($\delta_{ppm},\,J_{Hz})$

a and b, c and d: assignments may be exchanged.

Acknowledgment

This research was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China.

References and Notes

- 1. E. H. Seip, H. H. Ott, Planta Medica, 1983, 49, 119.
- 2. B. P. Pradhan, D. Sibabrat, A. Nath, J. N. Shoolery, *Phytochemistry*, 1984, 23, 2593.
- 3. B. P. Pradhan, H. N. Khastgir, Ind. J. Chem., 1973, 11, 1217.
- 4. W. G. Liu, M. S. Wang, Nanjing Yaoxueyuan Xuebao, 1985, 16, 69.
- 5. S. McLean, M. P.-Dumont, W. F. Reynold, H. Jacobs, S. S. Lachmansing, Can. J. Chem., 1987,65,2519.
- Spectrum data of compound 2: ¹HNMR(400MHz, CDCl₃) δ 6.31(d, 1H, J=10.1Hz, H-3), 5.66(d, 1H, J=10.1Hz, H-2), 5.53(dd, 1H, J=3.2, 7.8Hz, H-15), 1.28(s, 3H, H-25), 1.25(s, 3H, H-24), 1.13(s, 3H, H-23), 1.07(s, 3H, H-26), 1.02(s, 3H, H-27), 0.95 (s, 3H, H-29), 0.92(s, 3H,

Run Hui LIU et al.

H-30). ¹³CNMR(100MHz, CDCl₃) δ 206.5(C-1), 183.9(C-28), 160.3(C-14), 154.5(C-3), 124.5 (C-2), 116.6(C-15), 51.5(C-5), 51.3(C-9), 49.2(C-17), 41.6(C-10), 41.1(C-18), 39.3(C-7), 39.1 (C-8), 37.4(C-13), 36.2(C-4), 35.4(C-9), 33.8(C-21), 32.0(C-12), 31.5(C-16), 30.8(C-22), 29.7 (C-24), 29.3(C-20), 28.7(C-30), 25.4(C-26), 22.9(C-23), 22.2(C-27), 19.5(C-6), 18.9(C-11), 15.6(C-25).

Received 22 February, 2002

1082